首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17261篇
  免费   2512篇
  国内免费   1762篇
化学   5278篇
晶体学   90篇
力学   2892篇
综合类   127篇
数学   2584篇
物理学   10564篇
  2024年   19篇
  2023年   207篇
  2022年   284篇
  2021年   332篇
  2020年   435篇
  2019年   354篇
  2018年   368篇
  2017年   503篇
  2016年   562篇
  2015年   466篇
  2014年   861篇
  2013年   984篇
  2012年   892篇
  2011年   1337篇
  2010年   1094篇
  2009年   1250篇
  2008年   1184篇
  2007年   1412篇
  2006年   1308篇
  2005年   986篇
  2004年   965篇
  2003年   897篇
  2002年   622篇
  2001年   610篇
  2000年   480篇
  1999年   424篇
  1998年   392篇
  1997年   348篇
  1996年   313篇
  1995年   263篇
  1994年   208篇
  1993年   195篇
  1992年   164篇
  1991年   159篇
  1990年   117篇
  1989年   96篇
  1988年   89篇
  1987年   66篇
  1986年   41篇
  1985年   41篇
  1984年   36篇
  1983年   19篇
  1982年   39篇
  1981年   28篇
  1980年   16篇
  1979年   19篇
  1978年   7篇
  1974年   5篇
  1973年   11篇
  1971年   8篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
71.
In this study, we have provided a facile solution to synthesize well-aligned titanium dioxide nanorods by using hydrothermal reaction. By calcining the materials under different atmospheres and temperatures, a batch of titanium dioxides with excellent oxygen evolution reaction(OER) catalytic efficiency were obtained. This new structured TiO2 photoanode material yields a high photocurrent density of 5.69 mA/cm2 at 1.23 V vs. reversible hydrogen electrode(RHE) under simulated solar light(100 mW/cm2). Surface photovoltage techniques and other measurements were carried out to confirm that the enhanced photoelectrochemical performances were attributed to the synergistic effect of the phase junction and a certain content of surface states, which accelerate the separation and transmission of the photogenerated charges. This material with phase junction and surface states promises a potential application in the field of photoelectric catalysis under solar light.  相似文献   
72.
73.
This paper brings a comparative analysis between dynamic models of couple-stress elastic materials and structured Rayleigh beams on a Winkler foundation. Although physical phenomena have different physical origins, the underlying equations appear to be similar, and hence mathematical models have a lot in common. In the present work, our main focus is on the analysis of dispersive waves, band-gaps and localised waveforms in structured Rayleigh beams. The Rayleigh beam theory includes the effects of rotational inertia which are neglected in the Euler–Bernoulli beam theory. This makes the approach applicable to higher frequency regimes. Special attention is given to waves in pre-stressed Rayleigh beams on elastic foundations.  相似文献   
74.
Of interest here is the influence of loading rate on the stability of structures where inertia is taken into account, with particular attention to the comparison between static and dynamic buckling. This work shows the importance of studying stability via perturbations of the initial conditions, since a finite velocity governs the propagation of disturbances. The method of modal analysis that determines the fastest growing wavelength, currently used in the literature to analyze dynamic stability problems, is meaningful only for cases where the velocity of the perfect structure is significantly lower than the associated wave propagation speeds.  相似文献   
75.
A novel strategy for the construction of many-electron symmetry-adapted wave function is proposed for ab initio valence bond (VB) calculations and is implemented for valence bond self-consistent filed (VBSCF) and breathing orbital valence bond (BOVB) methods with various orbital optimization algorithms. Symmetry-adapted VB functions are constructed by the projection operator of symmetry group. The many-electron symmetry-adapted wave function is expressed in terms of symmetry-adapted VB functions, and thus the VB calculations can be performed with the molecular symmetry restriction. Test results show that molecular symmetry reduces the computational cost of both the iteration numbers and CPU time. Furthermore, excited states with specific symmetry can be conveniently obtained in VB calculations by using symmetry-adapted VB functions.  相似文献   
76.
Plasmon-enhanced electrochemiluminescence (ECL) at the single-nanoparticle (NP) level was investigated by ECL microscopy. The Au NPs were assembled into an ordered array, providing a high-throughput platform that can easily locate each NP in sequential characterizations. A strong dependence of ECL intensity on Au NP configurations was observed. We demonstrate for the first time that at the single-particle level, the ECL of Ru(bpy)32+-TPrA was majorly quenched by small Au NPs (<40 nm), while enhanced by large Au ones (>80 nm) due to the localized surface plasmon resonance (LSPR). Notably, the ECL intensity was further increased by the coupling effect of neighboring Au NPs. Finite Difference Time Domain (FDTD) simulations conformed well with the experimental results. This plasmon enhanced ECL microscopy for arrayed single NPs provides a reliable tool for screening electrocatalytic activity at a single particle.  相似文献   
77.
Herein, Ag nanoparticles (NPs) modified MoS2 (Ag−MoS2) was applied to the surface of glassy carbon (GC) to produce a robust electrochemical sensor for the detection of thiabendazole, a common antifungal in the post-harvesting of fruits. Cyclic voltammetry studies confirmed thiabendazole exhibited an irreversible, diffusion-controlled process on Ag−MoS2 with a two-fold increase in peak current than the pristine MoS2. A square wave voltammetry was used for the detection of TBZ. The developed sensor exhibited a linear range between 1–10 μM with LOD down to 0.1 μM (S/N>3). Analysis of TBZ in mango and banana matrices gave a recovery of 91.6–100.4 % indicating the suitability of the sensor for food safety monitoring.  相似文献   
78.
Caffeic acid (CA)-modified graphite electrodes [GE/poly(CA)] was applied to the co-detection of copper and lead in artisanal sugarcane spirit using square-wave anodic stripping voltammetry (SWASV). Electrochemical and morphological studies were performed, and a mechanism for polymerization was proposed. Electropolymerization, SWASV, and analysis conditions parameters were optimized. Interferents, repeatability, reproducibility, and addition and recovery tests were carried out. GE/poly(CA) shows a linear range from 15 to 705 μg/L with a limit of detection of 3.01 μg/L for Pb(II) and 4.50 μg/L for Cu(II). Real samples of artisanal sugarcane spirit were used, and the electrochemical results were compared with atomic absorption spectroscopy experiments.  相似文献   
79.
ZnO nanoparticles (ZnO-NP) were prepared by a facile precipitation technique using di-isopropyl amine as precipitating agent. The morpho-structure and porosity of the as-prepared nano-powder were investigated by FT-IR analysis, X-ray diffraction (XRD), scanning electron microscopy (SEM), and BET analysis. By drop-casting, a composite film was deposited to obtain ZnO-NP-Nafion/GCE modified electrode. The modified electrode was investigated by cyclic voltammetry, electrochemical impedance spectroscopy, and square wave anodic stripping voltammetry (SWASV) for the detection of Pb2+, Cd2+, Cu2+, and Fe3+, and it was successfully applied for the detection of Pb2+ and Cu2+ in real water samples.  相似文献   
80.
Combustion is often difficult to spatially direct or tune associated kinetics—hence a run-away reaction. Coupling pyrolytic chemical transformation to mass transport and reaction rates (Damköhler number), however, we spatially directed ignition with concomitant switch from combustion to pyrolysis (low oxidant). A ‘surface-then-core’ order in ignition, with concomitant change in burning rate,is therefore established. Herein, alkysilanes grafted onto cellulose fibers are pyrolyzed into non-flammable SiO2 terminating surface ignition propagation, hence stalling flame propagating. Sustaining high temperatures, however, triggers ignition in the bulk of the fibers but under restricted gas flow (oxidant and/or waste) hence significantly low rate of ignition propagation and pyrolysis compared to open flame (Liñán's equation). This leads to inside-out thermal degradation and, with felicitous choice of conditions, formation of graphitic tubes. Given the temperature dependence, imbibing fibers with an exothermically oxidizing synthon (MnCl2) or a heat sink (KCl) abets or inhibits pyrolysis leading to tuneable wall thickness. We apply this approach to create magnetic, paramagnetic, or oxide containing carbon fibers. Given the surface sensitivity, we illustrate fabrication of nm- and μm-diameter tubes from appropriately sized fibers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号